INTRODUCTION TO
LOCOMOTOR APPARATUS

1. Osteology: the scientific study of bones
2. Types of bones
3. Structure of mature bone
4. Bone as an organ
5. Osseous tissue and bone marrow
6. Arthrology: the study of joints
7. Types of joints
8. The structure of synovial joints
9. Myology: the study of muscles
10. Structure and form of skeletal muscles
11. The actions of muscles
Locomotor apparatus

- **passive part (skeleton):**
 - bones – osteology, osteologia
 - joints – arthrology, arthrologia

- **active part:**
 - skeletal muscles – myology, myologia
The scientific study of bones

- **skeleton** – 206 bones in the adult human body
- **individual bone structure:**
 - compact bone, *substantia compacta*
 - cortical bone, *substantia corticalis*
 - cancellous or spongy bone, *substantia spongiosa*
- **periosteum** or articular cartilage
- **endosteum**
Types of bones

- According to their shape and proportions:
 - long (trabecular) bones, *ossa longa* – most bones of the limbs
 - short bones, *ossa brevia* – the bones of the wrist and ankle
 - flat bones, *ossa plana* – most of the bones of the skull, sternum
 - irregular bones, *ossa irregularia* – the bones of the spine, hips, and cranial base
 - pneumatic (hollow) bones, *ossa pneumatica* – the bones of the facial skull
 - sesamoid bones, *ossa sesamoidea* – bones embedded in tendons (patella)
✓ long (trabecular) bones, *ossa longa* – limbs

- a shaft, the *diaphysis* ⇒ thick compact bone
- medullary cavity – bone marrow, red (in children) or yellow (in adults)
- rounded ends – *epiphyses*, proximal and distal
 ⇒ spongy bone + thin compact bone
- *metaphysis* ⇒ bone growth plate (epiphyseal plate)

epiphysis vs. apophysis
 ✓ short bones, *ossa brevia* – wrist and ankle, tarsal bones, vertebral bodies

- thin cortical bone
- spongy bone \(\Rightarrow\) red bone marrow
✓ flat bones, *ossa plana* – skull vault, sternum, ribs, scapula, hip bone

- two layers of compact bone
- spongy bone \Rightarrow red bone marrow
- *diploë* – variable in thickness, bones of the skull vault, *calvaria*
Types of bones

✓ irregular bones, *ossa irregularia* – vertebrae, bones of facial skull, cranial base
 • spongy bone ⇒ red bone marrow
 • thin compact bone

➢ pneumatic bones, *ossa pneumatica* – facial skull

➢ sesamoid bones, *ossa sesamoidea* – embedded in tendons
Bone structure

- Trajectory structure – at the organ level
 - trabecular bone
Structure of mature bone

- Lamellar structure – at the tissue level
 - lamellar bone
Bone as an organ

- Chemical composition:
 - water – 50%
 - lipids – 16%
 - proteins (collagen) – 12%
 - inorganic constituents (bone salts) – 22%
 (calcium in the form of hydroxyapatite)

- Osteon (Haversian system):
 - 5-20 osteonic concentric (primary) lamellae
 - circumferential lamellae (secondary lamellae)
 - interstitial lamellae
 - central, Haversian canal
 - Volkmann’s canals
Bone as a tissue

- Types of bone cells:
 - osteoblasts, *osteoblasti*
 - osteocytes, *osteocyti*
 - osteoclasts, *osteoclasti*

- Bone (extracellular) matrix:
 - organic part (35%) – elasticity
 - collagen type I – 95%
 - glycosaminoglycans – keratan sulfate, chondroitin sulfate and hyaluronic acid
 - inorganic part (65%) – hardness and rigidity; crystalline mineral salts, mostly crystals of hydroxyapatite
 - calcium phosphate – 85%
 - calcium carbonate – 6-10%
 - magnesium phosphate – up to 1.5%
 - calcium fluoride – traces
Bone marrow, *medulla ossium*

- **red bone marrow,** *medulla ossium rubra* – epiphyses of long bones, spongy bone of short and flat bones: vertebrae, sternum, ribs, pelvic bones etc. ~ 1500 g
 - haemopoiesis
 - biological defense
- **yellow (fatty) bone marrow,** *medulla ossium flava* – in the hollow interior of the middle portion of long bones
“Higgins, control yourself and sit down!”
Arthrology, *arthrologia*

- The science concerned with the structure, function, dysfunction and treatment of joints (articulations)

- **Synarthrosis** (BNA) – form of articulation in which the bones are rigidly joined by solid connective tissue:
 - fibrous
 - cartilaginous
 - osseus

- **Diarthrosis** (BNA) or *Synovial joint* – a freely movable joint:
 - articular cavity
 - passive and active body movements

NB: The prefix "arthro-" refers to joints, *Gr. ἄρθρον* arthron, a joint

Prof. Dr. Nikolai Lazarov 15
Fibrous joints, *juncturcae fibrosae*

- by fibrous connective tissue, **syndesmosis** (Gr. *syndesmos*, ligament) (syn, together + *desmos*, fiber):
 - interosseous membranes, *membranae interosseae*
 - interosseous ligaments, *ligamenta interossea*
 - sutures, *suturae*:
 - *sutura serrata*
 - *sutura plana*
 - *sutura squamosa*
 - **gomphosis** (or peg-and-socket joint) – specialized type restricted to the fixation of teeth in the mandible and maxillae

Prof. Dr. Nikolai Lazarov 16
Cartilaginous joints, juncturae cartilagineae

- by cartilage tissue, articulatio cartilaginea:
 - hyaline cartilage, synchondrosis
 - fibrocartilage:
 - symphysis
 - hemiarthrosis
 - temporary and permanent
Osseous joints, *juncturae osseae*

- by bone (osseous) tissue, **synostosis:**
 - functionally ⇔ temporary *synchondroses*
 - pathologically:
 - joint disorders
 - stiffness of a joint,
 ankylosis (Gr. ἀγκύλος, bent, crooked)
 - the surgical fixation of a joint, **arthrodesis**
Synovial joints, *juncturae synoviales s. articulationes*

- according to the number of articular surfaces:
 - simple joint, *art. simplex*
 - compound joint, *art. compósita*
 - complex joint (two cavities), *art. complexa*
 - united (combined) joint – functional combination of anatomically distinct joints
Structure of synovial joints, diarthroses

- articular surfaces
- articular capsule
- synovial (joint) cavity
- ligaments
Biomechanics of joints

- Two types of movements:
 - translational
 - rotational

- Character of movements ⇒ shape of articular surfaces

- Freedom of movements ⇒ congruence of articular surfaces
Morphological classification of synovial joints

- according to the shape of the articular surfaces:
 - **spheroidal** (ball-and-socket) joints, \textit{artt. spheroida}
 - **pivot** (trochoid) joints, \textit{artt. trochoidea}
 - **condyloid** (ellipsoid) joints, \textit{artt. ellipsoidea}
 - **sellar** (saddle) joints, \textit{artt. sellaris}
 - **hinge** joints, \textit{ginglymus}
 - **plane** joints, \textit{artt. plana}
The scientific study of muscles,

- human body ~ 650 muscles:
 - 30 facial muscles
- 40% of the body mass
- striated (skeletal) muscle tissue
- cross striated and voluntary – CNS innervation:
 - quick, voluntary control of contraction/relaxation
- active part of the locomotor apparatus:
 - skeletal muscles
 - initial and end portions of the digestive tract
 - muscles of the head (incl. eye, ear)
 - muscles of respiration
Structural organization of a skeletal muscle

- Central, active part – muscle (fleshy) belly
- End, mechanical parts – tendon, *tendo, inis*:
 - Origin of a muscle: *origo*
 - Attachment point: *insertio*
Types of skeletal muscles

- According to their appearance:
 - long muscles
 - short muscles
 - flat muscles – *aponeurosis*

- According to the arrangement patterns:
 - simple muscles
 - compound muscles – in the limbs:
 - with more than one initial origins:
 - two separate origins – *m. biceps brachii*
 - three-headed – *m. triceps brachii*
 - four-headed – *m. quadriceps femoris*
 - with more than one insertion points – *mm. flexores digitorum sup. et prof.*
 - with an intermediate tendon or intersections:
 - biventer muscles – in the neck, *m. omohyoideus*
 - *intersectiones tendineae* – *m. rectus abdominis*
Shapes of skeletal muscles

According to the arrangement patterns of the fascicles – 5 types:

☑ fusiform muscle,
m. fusiformis – in the limbs

☑ pennate muscle
 - **m. unipennatus** – **mm. interossei palmares**
 - **m. bipennatus** – **mm. interossei dorsales**

☑ convergent muscles,
flat muscles, **m. planus** – in the back and abdominal wall
 - quadrilateral,
 - rhomboid,
 - triangular etc.

☑ annular muscle, **m. anularis**
 – around body openings
 - sphincter, **m. sphincter**
 - circular, **m. orbicularis**

☑ parallel muscles – biceps, triceps
General structure of the muscle fleshy belly

- **striated muscle fibers**
- **connective tissue skeleton:**
 - layers of connective tissue
 - blood vessels
 - lymph vessels
 - nerve fibers
Biomechanics of skeletal muscles

- **Internal mechanics:**
 - muscle contractility
 - muscle force – load-bearing capacity:
 - physiological cross sectional area
 - muscle force vector ⇒ direction and strength of a force
 - effects of muscle actions:
 - weight loading of a muscle
 - muscle length of loading
 - lever arm length
Biomechanics of skeletal muscles

- External mechanics:
 - punctum fixum
 - punctum mobile
 - fulcrum
 - effort
 - resistance (load)

- class 1 lever
 (lever of equilibrium)

- class 2 lever:
 - type I:
 (lever of force)
 - type II:
 (lever of velocity)
Biomechanics of skeletal muscles

- External mechanics:
 - punctum fixum
 - punctum mobile
 - fulcrum
 - effort
 - resistance (load)

- class 1 lever
 (lever of equilibrium)

- class 2 lever:
 - type I:
 (lever of force)
 - type II:
 (lever of velocity)
Archimedes’ Lever

Thank you...