1. Diencephalon – regional organization and internal structure:
 ✓ thalamus – topographic and nuclear organization
 ✓ metathalamus – the geniculate bodies
 ✓ epithalamus – pineal gland and habenula
 ✓ subthalamus (ventral thalamus)
 ✓ hypothalamus – divisions, nuclei and connections

2. Third ventricle

3. Brainstem reticular formation
Embryologic development

- Embryonic origin:
 - side walls of the *prosencephalon* (forebrain)

- Location – at the midline of the brain:
 - caudally – *mesencephalon*
 - cranially – *telencephalon*

- Functions:
 - relay system between sensory input neurons and other parts of the brain
 - works in tandem with the limbic system
Diencephalon – gross structure and parts

- Pineal gland
- Caudate nucleus
- Thalamus
- Amygdala
- Pituitary gland
- Hypothalamus
- Hippocampus
- Corpus callosum
- Septum pellucidum
- Interthalamic adhesion
- Anterior commissure
- Hypothalamus
- Frontal lobe
- Mammillary body
- Optic chiasm
- Pituitary gland
- Fornix
- Choroid plexus in third ventricle
- Thalamus
- Habenular nucleus
- Pineal gland
- Part of the corpora quadrigemina
- Mesencephalic aqueduct
- Infundibulum
- Cerebellum
- Fourth ventricle

5 parts:
1. THALAMUS
2. HYPOTHALAMUS
3. EPITHALAMUS
4. SUBTHALAMUS
5. METATHALAMUS
Thalamus – external features

- two egg-shaped lobes of grey matter
 - third ventricle medially
 - hypothalamus ⇒ hypothalamic sulcus

- nuclear complex – 2% of the total brain
 - about 80%
 - of diencephalic mass
 - ~30 mm long
 - ~20 mm wide
 - ~20 mm tall

Gr. θάλαμος = room, chamber

- Thalamus dorsalis:
 - rostral pole = tuberculum anterius thalami
 - caudal pole = pulvinar thalami (“cushioned seat”)
 - interthalamic adhesion
 - lamina affixa
 - stria terminalis thalami
Thalamus – internal structure

- internal medullary lamina (medial) – Y-shaped:
 - anterior
 - medial
 - lateral nuclear groups

- external medullary lamina (lateral):
 - reticular nucleus of the thalamus
Thalamus – nuclear organization

- 50-60 distinct nuclei
- 5 functional nuclear groups:
 - sensory relay nuclei
 - motor relay nuclei
 - reticular system relay nuclei
 - limbic system relay nuclei
 - association relay nuclei
- 8 main anatomic nuclear groups:
 - intralaminar
 - ventral – anterior, lateral, posterior
 - lateral dorsal
 - medial
 - midline
 - anterior
 - posterior
 - reticular
Thalamic nuclei

- in internal medullary lamina:
 - intralaminar nuclear group:
 - rostral intralaminar nuclei:
 - central lateral nucleus, *nucleus centralis lateralis*
 - central medial nucleus, *nucleus centralis medialis*
 - paracentral nucleus, *nucleus paracentralis*
 - caudal intralaminar nuclei:
 - centromedian nucleus, *nucleus centromedianus*
 - parafascicular nucleus, *nucleus parafascicularis*
 - laterally from internal medullary lamina:
 - ventral nuclear group:
 - ventral anterior nucleus, *nucleus ventralis anterior*
 - ventral lateral nucleus, *nucleus ventralis lateralis*
 - ventrobasal nuclei, *nuclei ventrobasales*:
 - ventral posterior, *nucleus ventralis posterolateralis*
 - ventral posteromedial, *nucleus ventralis posteromedialis*
 - ventral posterior inferior, *nucleus ventralis posterior inferior*
Thalamic nuclei

- **medial nuclear group:**
 - (mediodorsal complex)
 - mediodorsal nucleus, *nucleus mediodorsalis* (magnocellular portion)
 - affects, emotion, behaviour
 - medioventral nucleus (parvicellular portion)
 - *nucleus medioventralis*

- **midline nuclear group:**
 - paratenial and paraventricular nuclei
 - limbic system
 - memory, awake and alert state

- **lateral nuclear group:**
 - lateral dorsal, *nucleus dorsalis lateralis*
 - lateral posterior, *nucleus lateralis posterior*
 - pulvinar, *nuclei pulvinares*
Thalamic nuclei

- **anterior nuclear group:**
 - limbic system
 - *nucleus anterodorsalis*
 - *nucleus anteroventralis*
 - *nucleus anteromedialis*

- **posterior nuclear group:** (in ventral pulvinar)
 - posterior nucleus, *nucleus posterior*
 - suprageniculate nucleus
 - limitans nucleus

- **reticular nucleus of thalamus**

- **geniculate nuclear group:**
 - medial geniculate nucleus
 - lateral geniculate nucleus
- **Medial geniculate body**: subcortical acoustic center (thalamic relay)
 - inferior colliculi \(\rightarrow\) inferior brachium
 - acoustic radiation \(\rightarrow\) auditory cortex

- **Lateral geniculate body**: primary processing center for visual information
 - superior colliculi \(\rightarrow\) brachium of superior colliculus
 - optic radiation \(\rightarrow\) visual (striate) cortex
- **stria medullaris thalami**
- **habenular trigone:**
 - habenular nuclei, medial and lateral
- **habenula**
 - habenular commissure
- **pineal gland, corpus pineale (epiphysis)**
- **posterior commissure**
 - subfornical organ (circumventricular organs)
Subthalamus (ventral thalamus)

- subthalamic nucleus (corpus Luysi): basal ganglia
 ✔ extrapyramidal motor system
- zona incerta – GABAergic neurons
- nuclei campi perizonales (H₁- and H₂-fields of Forel)
- ansa lenticularis and lenticular fasciculus
Hypothalamus – gross anatomy

Gr. ήποθαλαμός = hypo-, cognate to Latin sub- "under"
✓ most ventral portion of the diencephalon
✓ weight 4-5 g – less than 1% of the total human brain volume
- preoptic area, area preoptica
- optic chiasm, chiasma opticum
- tuber cinereum, median eminence
- infundibular tract, infundibulum ⇒ hypophysis cerebri
- mammillary bodies, corpora mammillaria
Optic chiasm and tract

- part of the visual system
- Gr. χίασμα, "crossing", from the Greek χιαζω 'to mark with an X', after the Greek letter 'X', chi
- the part where CN II partially cross
- allows for parts of both eyes that attend to the right visual field to be processed in the left visual system in the brain, and vice versa
Mammillary bodies

- incorporated into the limbic system – part of the ‘Papez circuit’
- fasciculus mammillothalamicus (tract of Vicq d’Azyr)
- fasciculus mammillotegmentalis
- involved with the processing of recognition memory
Hypothalamic divisions

- hypothalamic areas and zones:
 - rostral
 - dorsal
 - intermediate zone
 - lateral zone
 - medial zone
 - posterior
Hypothalamic nuclei

- **preoptic region:**
 - preoptic periventricular nucleus
 - medial preoptic nucleus
 - lateral preoptic nucleus

- **anterior hypothalamic region:**
 - supraoptic nucleus
 - \(\Rightarrow\) *oxytocin, vasopressin* (ADH)
 - paraventricular nucleus
 - anterior hypothalamic nucleus
 - suprachiasmatic nucleus
 - \(\Rightarrow\) *endogenic brain clock* (circadian rhythms)
Hypothalamic nuclei

- **intermediate hypothalamic region:**
 - dorsomedial nucleus
 - ventromedial nucleus
 - tuberal nuclei, incl.
 - arcuate (infundibular) nucleus: A₁₂

- **posterior hypothalamic region:**
 - medial mammillary nucleus
 - lateral mammillary nucleus
 - intermediate mammillary nucleus
 - (intercalated nucleus of *Le Gros Clark*)
 - posterior hypothalamic nucleus
Hypothalamus – functional significance

- 0.5% of the total volume of human brain
- main function – homeostasis (maintaining the body's status quo)
- central control of:
 - visceral functions
 - endocrine effects – release/inhibiting factors
- neurosecretion:
 - pituitary hormones – oxytocin, vasopressin
- temperature regulation – dual thermostat
- instinctive and cyclic behaviors:
 - regulation of food (appetite) and water intake
 - control of sexual behavior and reproduction
 - biological clock (sleep-waking cycle)
 - expression of emotion, fear, rage, aversion, pleasure and reward
Hypothalamus – clinical significance

- numerous functional considerations in injury:
 - sleepiness
 - obesity
 - diabetes insipidus
 - adiposogenital dystrophy
 - libido loss
 - dysregulation of body temperature
Diencephalic syndrome

- Synonyms: diencephalic syndrome of emaciation, Russell’s syndrome:

 ✓ hypothalamic tumors
 ✓ postnatal failure to thrive
 ✓ progressive emaciation (abnormal thinness)
 ✓ unusual eye position and sometimes blindness
 ✓ intense sleepiness
 ✓ amnesia
 ✓ euphoric appearance
 ✓ emesis (vomiting)
Hypothalamic connections

- **Afferent connections:**
 - corticohypothalamic fibers
 - limbic system –
 - hippocampo-hypothalamic afferents
 - amygdalo-hypothalamic fibers
 - septal region
 - piriform lobe
 - thalamus – periventricular nucleus, zona incerta
 - brainstem reticular formation –
 - dorsal longitudinal fasciculus (of Schütz)
 - mammillary peduncle

- **Efferent connections:**
 - medial forebrain bundle
 - hypothalamo-hypophysial – neurohypophysis
 - mammillary efferent fibers – fasciculus mammillaris princeps:
 - fasciculus mammillothalamicus
 - fasciculus mammillotegmentalisis
 - descending hypothalamic projections:
 - n. tractus solitarii, n. dorsalis n. vagi
 - laminae I and II of the spinal cord
Third ventricle

- embryonic origin – prosencephalon
- location – between the two thalami (lateral walls) and hypothalamus
Third ventricle

- **anterior boundary** – *lamina terminalis*
 anterior commissure

- **posterior boundary** –
 posterior commissure
 - pineal recess ⇔ pineal gland
 - cerebral aqueduct

- **floor** – parts of the hypothalamus
 (optic chiasma, tuber cinereum, infundibulum)
 - optic recess
 - infundibular recess

- **roof** – layer of ependyma, covered by
 the *tela choroidea ventriculi tertii* ⇔
 choroid plexus of the third ventricle

- **communication with:**
 - fourth ventricle –
 cerebral aqueduct (of *Sylvius*)
 - lateral ventricles –
 interventricular foramina (of *Monro*)
Why is the reticular formation a reticular formation? Because their fibers indeed build a net.

NB: reticulum means netlike structure
Reticular formation (RF) – general considerations

1. Brainstem RF proper
2. Spinal RF
3. Other RF-related brainstem areas
 ✓ periaqueductal grey matter (PAG)
 ✓ reticular activating system (RAS)
 ✓ locus coeruleus

✓ Widespread distribution and extensive collateralization of reticular axons

✓ Typical neurons of the reticular formation – mostly interneurons
Brainstem RF proper – (>100 small) nuclei

- **Median (midline) column of reticular nuclei – raphe nuclei** (serotonergic and peptidergic – enkephalin and β-endorphin):
 - *nucleus raphes obscurus et pallidus* in medulla
 - *nucleus raphes magnus* in pons (peptidergic)
 - *nucleus raphes centralis superior* and
 - *nucleus raphes dorsalis* in midbrain

- **Medial (paramedian) column – magnocellular (efferent and motor):**
 - medullary gigantocellular (magnocellular) nucleus
 - pontine gigantocellular nucleus
 - *nucleus tegmenti pontis*
 - *nucleus pontis caudalis*
 - *nucleus pontis oralis*
 - *nucleus cuneiformis*
 - *nucleus subcuneiformis*

- **Lateral column – parvocellular (afferent and sensory):**
 - *nucleus pontis centralis*
 - *nuclei parabrachiales*
 - *nucleus tegmentalis pedunculopontinus*
Reticular formation – functions

- controls ~25 specific behaviors:
 - sleep
 - walking
 - eating
 - urination & defecation
 - sexual activity

- additional functions:
 - arousal
 - attention
 - cardiac reflexes
 - motor functions
 - regulates awareness
 - relays nerve signals to the cerebral cortex

- one of the phylogenetically oldest portions of the brain
“Everything we thought we knew about the hypothalamus was wrong! Wrong, wrong, wrong!”