

Membranous Organelles

- 1. Endoplasmic reticulum:
 - ✓ Rough Endoplasmic Reticulum (RER)
 - Smooth Endoplasmic Reticulum (SER)
- 2. Annulate lamellae
- 3. Golgi apparatus
- 4. Secretory vesicles (granules)
- 5. Lysosomes
- 6. Peroxisomes (microbodies)
- 7. Mitochondria
- 8. Coated vesicles

Membrane-limited organelles

- Endoplasmic reticulum
- 🗸 Annulate lamellae
- Transport vesicles
- 🗸 Golgi apparatus
- Secretory vesicles
- Lysosomes
- Proteasomes
- Peroxisomes
- Mitochondria
- Coated vesicles
 Nucleus

Ergastoplasm

Keith Roberts Porter (1912-1997)

Albert Claude (1899-1983)

- Garnier basophilic substance (RNA), ergastoplasm (Etymology: Gr. ergaster, worker + plasma, to mold)
- Ultrastructure: Porter, Claude, Fullam, 1945
- An interconnected network (reticulum) of:
 - ✓ cisternae (flattened sacs)
 - ✓ vacuoles
 - \checkmark up to 10% of cell volume
- Chemical composition:
 ✓ proteins 60-65%
 ✓ lipids 35-40%

Endoplasmic Reticulum

Endoplasmic reticulum

 Endoplasmic reticulum:
 ✓ rough
 ✓ smooth

> rough endoplasmic reticulum

protein synthesis

Rough (granular) endoplasmic reticulum

Structure:

Rough ER

- ✓ cisternae 7-8 nm
- ✓ ribosomes
- Functions:
 - ✓ protein synthesis and segregation:
 - intracellular utilization
 - extracellular export
 - ✓ initial glycosylation of glycoproteins
 - ✓ phospholipid synthesis
 - Prominent in proteinsynthesizing cells:
 - ✓ blast cells
 - ✓ exocrine gland cells
 - ✓ plasma cells
 - ✓ neurons

Rough (granular) endoplasmic reticulum

Structure:

Rough ER

- ✓ cisternae 7-8 nm
- ✓ ribosomes
- Functions:
 - ✓ protein synthesis and segregation:
 - intracellular utilization
 - extracellular export
 - ✓ initial glycosylation of glycoproteins
 - \checkmark phospholipid synthesis
 - Prominent in proteinsynthesizing cells:
 - ✓ blast cells
 - ✓ exocrine gland cells
 - ✓ plasma cells
 - ✓ neurons

A Erythroblast

C Plasma cell

B Eosinophilic leukocyte

D Pancreatic acinar cell

Protein synthesis

Signal hypothesis for the synthesis of secretory proteins:

- ✓ signal sequence of mRNA –
 20-25 hydrophobic amino acids
- integral membrane proteins
 - ribophorins I and II
 - signal-recognition particle (SRP)
 - docking protein
 (SRP receptor protein)
 - translocon (translocator or translocation channel)

ś steps:

- initial (core) glycosylation
- formation of disulfide bounds
- protein folding and assembly
 - chaperones
- proteolytic release of newly synthesized protein

Endoplasmic Reticulum

Endoplasmic reticulum

 Endoplasmic reticulum:

> smooth endoplasmic reticulum

lipid synthesis steroid synthesis detoxification

Smooth (agranular) endoplasmic reticulum

Structure:

- ✓ tubular cisternae 6-7 nm
- ✓ lacks the associated ribosomes
- Functions:
 - \checkmark lipid absorption and metabolism
 - ✓ glycogen metabolism
 - ✓ synthesis of steroid hormones
 - ✓ regulation of Ca^{2+} concentration
 - ✓ drug detoxification
 - Well-developed in:
 - ✓ steroid-producing cells:
 - cells of adrenal cortex
 - interstitial cells of gonads
 - ✓ other cell types:
 - liver cells (hepatocytes)
 - skeletal and cardiac muscle cells
 sarcoplasmic reticulum
 - > nerve cells (neurons)
 - glandular cells

Endoplasmic reticulum: clinical significance

Morbus von Gierke – type I glycogen storage disease:
 ✓ gene deficiency of the enzyme glucose-6-phosphatase

MUSCLE

✓ increased glycogen storage in liver and kidneys

Endoplasmic reticulum: origin

Annulate lamellae

Structure:

- ✓ stacks of flat, membranous cisternae
- ✓ contain numerous pore complexes
- ✓ frequently seen as extensions of RER cisternae
- ✓ intermediate stage between the ER and the nuclear envelope
- Origin:
 - ✓ derived from the nuclear envelope
- Abundant in:
 - ✓ human oocytes
 - ✓ spermatozoa
 - ✓ Sertoli cells in testis
 - ✓ tumor cells
- Function:
 - ✓ largely unknown
 - \checkmark attachment sites for stored RNA
 - ✓ reserve fund for nuclear envelope **Prof. Dr. Nikolai Lazarov**

Membranous Organelles

Golgi Apparatus

sorting

Cammillo Golgi (1843-1926)

Golgi Apparatus

The Nobel Prize in Physiology or Medicine 1906

- *ital. apparato reticolare interno:* Cammillo Golgi, 1886, 1898
- Synonyms:
 - ✓ Golgi complex
 - ✓ Golgi zone
 - ✓ Golgi bodies
- Ultrastructure: A. Dalton, M. Felix, 1953

Dictyosome:

- stacks of smooth membrane-limited:
 - ✓ 3-12 flattened cisternae (50-200 nm)
 - ✓ vesicles (30-50 nm)
 - ✓ large, clear vacuoles (200-300 nm)

Prof. Dr. Nikolai Lazarov

Golgi Apparatus – structure

both morphologically and functionally polarized structure:

GERL concept – zone of Novikoff (1964)

- G Golgi apparatus
- ER Endoplasmic Reticulum
 - Lysosomes

Prof. Dr. Nikolai Lazarov

16

Golgi Apparatus – functional polarity

1. Packing

3. Storing

5. Specific

- trafficking and sorting of proteins:
- glycosylation, sulfation, phosphorylation, and limited proteolysis of proteins
- initiates packing, concentration, and storage of secretory products

Golgi Apparatus – clinical relevance

C-Popode

INS Protein Protein Statutions HIOD F245 F25L

- Hyperproinsulinaemia: ✓ immature forms of insulin make up the majority of circulating insulin
- Mucolipidosis a group of inherited metabolic disorders in which mucopolysaccharides and lipids accumulate in tissues:
 - type I (sialidosis) a deficiency of the lysosomal enzyme sialidase
 - type II (inclusion, I-cell disease) - a deficiency in a phosphorylating enzyme normally present in the Golgi complex ⇒ lysosomes contain large inclusions of undigested glycosaminoglycans and glycolipids
 - type III (pseudo-Hurler polydystrophy)
 the glycoproteins are not destined for lysosomes
 - ✓ type IV alterations of a protein in the cell that is believed to be involved in the movement of molecules such as calcium across cell membranes

Prof. Dr. Nikolai Lazarov

Membranous Organelles

Secretory vesicles (granules)

storage and release of secretory products

19

This animation illustrates how secretion vesicles, anising from the Golgi, fuse with the PM and dump the contents of their lumen outside of the cell. Note that the membrane of the SV turns insideout and becomes new PM.

Secretory vesicles

Secretory granules:

- \checkmark shape spherical
- $\checkmark~$ diameter 0.15 μm >1 μm
- $\checkmark\,$ clathrin-coated vesicles
- ✓ core histamine, chromogranin B, secretogranin II

Neurosecretosomes – hormones

Zymogen granules – digestive enzymes

a 12 minutes, proint my seen over zymo

taw minutes later

are seen over a

LABELED LEUGH

Synaptic vesicles – transmitters

Prof. Dr. Nikolai Lazarov

Osmogen granuk Formisso

20

Secretory vesicles

Membranous Organelles

Lysosomes

intracellular digestion

22

Lysosomes

(Gr. lysis, dissolution or destruction + soma, body)

Discovered by Christian de Duve, 1955

0.05-0.5 µm

ACID HYDROLASES

phospholipases

ADP + P

nucleases proteases glycosidases

lipases phosphatases sulfatases

pH-7.2

CYTOSOL

Spherical organelles: ✓ size – 0.05-0.5 µm

- ✓ single layer (unit) membrane 6 nm
- ✓ Iysosomal matrix pH 5 ⇒ favorable for enzymatic activity
- ✓ more than 40 hydrolytic enzymes 23

Fusion forms secondary lysosome

Golgi apparatus

Primary lysosome

when body

thepocytowie

Lysosomes – stages

Primary lysosomes:

inactive enzymes

Secondary lysosomes

(phagosomes, phagolysosomes):

- ✓ heterolysosomes
 (heterophagosomes)
 - autophagosomes (autophagic vacuoles)
 - residual bodies(telolysosomes)
 - ⇒ lipofuscin droplets
- \checkmark pinocytotic vesicles
- ✓ multivesicular bodies

Lysosomes – ultrastructure

Abb. 1.19. Primäre Lysosomen eines Makrophagen bei stärkerer Vergrößerung. Die *Pfeile* deuten auf die die Organellen umgebende Membran. Balken = 0,1 μm. (Aus Junqueira et al. 1998)

Lysosomes – "suicide-bags" or "suicide-sacs"

(autophagy – self-eating, Gr. auto, self + phagein, to eat)

controlled digestion of damaged organelles within a cell autophagic cell death – a form of programmed self destruction (autolysis)

5 µm

the cells' garbage disposal system

26

Proteasomes

Lysosome

26S Proteasome

Ubiquitin 🛶

Regulatory

article

Regulators

Partic

Core

Particle

Autolysosome

Unfolded

protein

multiple-protease complexes that digest proteins targeted

Ubiquitin-Proteasome (Selective)

- There are two major intracellular devices in which damaged or unneeded proteins are Autophagy (bulk)
 broken down:
 - ✓ lysosomes
 - ✓ proteasomes
- Proteasomes deal primarily with proteins as individual molecules, whereas lysosomes digest bulk material introduced into the cell or whole organelles and vesicles
- Proteasome has:
 - \checkmark a core particle with the shape of a barrel
 - ´ a regulatory particle that contains ATPase

The Nobel Prize in Chemistry 2004) was awarded to Aaron Ciechanover, Avram Hershko and Irwin Rose "for the discovery of ubiquitin-mediated protein degradation" **Prof. Dr. Nikolai Lazarov**

(1936-)

Lysosomes – clinical relevance

Lysosomal storage diseases:

Table 2–3. Examples of Diseases Caused by Lysosomal Enzyme Failure and Accumulation of Undigested Material in Different Cell Types.

Disease	Faulty Enzyme	Main Organs Affected
Hurler disease	α-∟-Iduronidase	Skeleton and nervous system
Sanfilippo syndrome A	Heparan sulfate sulfamidase	Skeleton and nervous system
Tay-Sachs	Hexosaminidase-A	Nervous system
Gaucher	β-d-Glycosidase	Liver and spleen
I-cell disease	Phosphotransferase	Skeleton and nervous system
Phillippe Gaucher (1854-1918)	Mentality normal Pingueculae in eyes Marked enlargement and cirrhosis of liver Splenomegaly Anemia, thrombocytopenia, leukopenia Osteonecrosis of hip: dislocation of hip, tracture, "Erlenneyer flask" deformity Pigmentation Chronic form in adult	

Membranous Organelles

Peroxisomes

sites for oxygen utilization

Peroxisomes (microbodies)

 identified by EM as organelles by Christian de Duve, 1967

Gr. peroxide + soma, body
microbodies: Rhodin, 1954

Spherical organelles: 70-100/cell

- ✓ size 0.5-3 μ m (macroperoxisomes)
- microperoxisomes 0.1-0.3 μm
 homogeneous matrix
 - (crystalloid core or nucleoid)
- marginal plate
- / single layer membrane 6-8 nm

Peroxisomes – structure and function

Enzymes: >50

- ✓ catalase 40%
- ✓ peroxidase
- ✓ β -oxydase of very long-chain fatty acids
- \checkmark D- and L-amino oxydases
- ✓ urate oxidase

Functions:

- ✓ a compartment for oxidation reactions:
 - decomposes H₂O₂ to H₂O and O₂ and eliminates it
 - degrades several toxic molecules and prescription drugs
- ✓ involved in lipid biosynthesis
- \checkmark important role in cellular respiration

Prof. Dr. Nikolai Lazarov

Peroxisome

Lipid bilayer

Urate oxidase

crystaline core

Peroxisomes clinical relevance

Peroxisomal disorders –

- 17 inherited metabolic diseases:
- ✓ Refsum's disease leukodystrophy:
 - faulty enzymes during the alpha-oxidation of phytanic acid
- ✓ Zellweger syndrome:
 - deficiency in the protein import can lead to empty peroxisomes
- ✓ X-chromosome-linked adrenoleukodystrophy:
 - a defective integral membrane protein that participates in transporting very long-chain fatty acids into the peroxisome for β -oxidation

J. Wills, N.J. Manning and M.M. Reilly: Refram's disease. O J Med 2001: 94: 403-406

33

Sigvald Bernhard Refsum (1907 - 1991)

Peroxisomes – clinical relevance

Edgar Otto Conrad von Gierke

Von Gierke disease:

- > glycogen storage disease type 1
- impairment of glycogenolysis:
 - ✓ hypoglycemia
 - ✓ hyperlipidemia (excess acetyl CoA)
 - \checkmark accumulation of glycogen in the liver and kidneys

Glycogen Storage Disease Type 1

Проф. д-р Николай Лазаров

Membranous Organelles

Mitochondria

ATP and steroid synthesis

35

Richard Altmann

und ihre

den Zellen

Die Elementarorganismen

Beziehungen zu

Mitochondria

vitally staining – Janus green B

Gr. *mitos*, thread + *chondros*, granule:

Carl Benda, 1898

- First observations: ✓ Kölliker, 1850
 - ✓ Flemming, 1882
 - ✓ R. Altmann, 1890: bioblasts

Size:

- ✓ 0.5-1 μ m wide ✓ length up to 10 μ m
- Number varying:
 - ✓ fibroblasts 100
 - ✓ hepatocytes 800 (25%)
 - ✓ oocytes 300 000

36

Matri

Hepatocyte mitochondrior

Adrenal cortex endocrine cel

mitochondrio

Astrocyte

nitochondri

Outer

Mitochondria – structure

Ultrastructure: G. Palade, F.S. Sjöstrand, 1952

two mitochondrial membranes:

- **outer** (6-7 nm) ~50% proteins and lipids: > transport proteins (porin)
 - enzymes: oxidases, hydrolases, transferases, enzymes of fatty acid metabolism, cytochromes
 - inner: 80% proteins and cardiolipin
 - reductases, oxidases, dehydrogenases,
 ATP synthase, transferases, cytochromes
 - > enzymes for oxidative phosphorylation and for electron transport system (cytochromes)
 - > forms cristae (tubules) intracristal space
 - > attached elementary particles

intramembranous space (outer chamber) – 4-10 nm matrix – intercristal (matrix) space

Fernández

Morán

(1924 - 1999)

Intermembrane

>

>

 \triangleright

Outer mitochondrial membrane

space

Globular units

Mitochondria – structure

Elementary particles: Fernández-Morán, 1962-1964

 $(F_1$ -spheres, oxisomes, ATP somes) = 10000-100000/cell; ~ 8-9 nm

- ✓ tennis racquet-shaped structures:
 - > spherical head 9-10 nm, ATP synthase
 - cylindrical stalk 4-5 nm
 - > basis 11 nm
- oxidative phosphorylation >
 - synthesis of ATP
 - electron transport system (400 nm²)
 - artifact structures

Globular unit synthesis of ATP using energy derived

from proton reflux

F, spheres

Intermembrano snace (energy transformation) Reflux to matrix nner mitochondria nomhmite mitranous space at th mense of electron transpo ATP synthesis intercristae space

Mitochondria – structure and function

Mitochondrial matrix: (intercristal space; inner chamber) rich in proteins, DNA, RNA

- ✓ matrix granules: 30-50 nm; storage site for divalent cations – Ca²⁺, Mg²⁺
- ✓ mitoribosomes (mrRNA): 15-20 nm
- ✓ mitochondrial mRNA, tRNA
- ✓ circular DNA: 2-3 nm
- ✓ RNA- and DNA-polymerases
- ✓ Krebs cycle enzymes
- ✓ enzymes for lipid synthesis
- \checkmark enzymes for protein synthesis

Origin of mitochondria:

- ✓ evolutionary from an ancestral aerobic prokaryote adapted to an endosymbiotic life (intracellular symbiosis)
- new mitochondria from preexisting mitochondria by growth and subsequent division (fission)

Mitochondrial Electron Transport Chain

40

Mitochondrial diseases

Coated vesicles – types

Coated

- 3 types coated vesicles:
 - clathrin-coated vesicles 6-8 nm spines
 - coatomer-coated vesicles
 - 🗸 caveolae

(c) Receptor-mediated endocytosis

The Nobel Prize in Physiology or Medicine 2013 James E. Rothman. Randy W. Schekman. Thomas C. Sudhof "for their discoveries of machinery regulating vesicle traffic, a major transport system in our cells".

Photo: A. Mahmoud James E. Rothman

Photo: A. Mahmoud Randy W. Schekman

44

0.25 µm

A Schekman Thomas C. Südhof Prof. Dr. Nikolai Lazarov

Clathrin-coated vesicles

- mediate selective transport of transmembrane receptors
- transmembrane proteins (spines) 6-8 nm
- clathrin molecules, bound via adaptin
- formed by endocytosis or from the Golgi apparatus

Formation of Clathrin-Coated Vesicles

- 2500 every minute
- CCV uncoat within seconds
- Clathrin-coated pits and vesicles 45 **Prof. Dr. Nikolai Lazarov**

Coatomer-coated vesicles

- COPII (a-COP) responsible for anterograde transport from the endoplasmic reticulum to the Golgi complex
- COPI (β-COP) involved in Golgi to endoplasmic reticulum (retrograde) vesicle transport, and possibly also in intra-Golgi transport

